add files

This commit is contained in:
mantaru 2024-10-28 17:05:55 +01:00
commit 4320d480bc
3 changed files with 555 additions and 0 deletions

BIN
aufgabe3/schleuse.lsim Normal file

Binary file not shown.

View File

@ -0,0 +1,523 @@
<HTML>
<HEAD>
<META name="description"
content="Violet UML Editor cross format document" />
<META name="keywords" content="Violet, UML" />
<META charset="UTF-8" />
<SCRIPT type="text/javascript">
function switchVisibility() {
var obj = document.getElementById("content");
obj.style.display = (obj.style.display == "block") ? "none" : "block";
}
</SCRIPT>
</HEAD>
<BODY>
This file was generated with Violet UML Editor 3.0.0.
&nbsp;&nbsp;(&nbsp;<A href=# onclick="switchVisibility()">View Source</A>&nbsp;/&nbsp;<A href="http://sourceforge.net/projects/violet/files/violetumleditor/" target="_blank">Download Violet</A>&nbsp;)
<BR />
<BR />
<SCRIPT id="content" type="text/xml"><![CDATA[<ClassDiagramGraph id="1">
<nodes id="2">
<ClassNode id="3">
<children id="4"/>
<location class="Point" id="5">350.0,190.0</location>
<id id="6" value="c1f6949d-3f7e-4a9b-b6fc-35318e95b4e3"/>
<revision>1</revision>
<backgroundColor id="7">
<red>255</red>
<green>255</green>
<blue>255</blue>
<alpha>255</alpha>
</backgroundColor>
<borderColor id="8">
<red>191</red>
<green>191</green>
<blue>191</blue>
<alpha>255</alpha>
</borderColor>
<textColor id="9">
<red>51</red>
<green>51</green>
<blue>51</blue>
<alpha>255</alpha>
</textColor>
<preferredSize class="Rectangle" id="10">0.0,0.0,0.0,0.0</preferredSize>
<name id="11" justification="1" size="3" underlined="false">
<text>Fahrgast</text>
</name>
<attributes id="12" justification="0" size="4" underlined="false">
<text>k_name: string
email: string</text>
</attributes>
<methods id="13" justification="0" size="4" underlined="false">
<text>__init__(...)</text>
</methods>
</ClassNode>
<ClassNode id="14">
<children id="15"/>
<location class="Point" id="16">320.0,350.0</location>
<id id="17" value="68adef3d-d758-4a8c-857c-af9254c2569d"/>
<revision>1</revision>
<backgroundColor reference="7"/>
<borderColor reference="8"/>
<textColor reference="9"/>
<preferredSize class="Rectangle" reference="10"/>
<name id="18" justification="1" size="3" underlined="false">
<text>Mitfahrer</text>
</name>
<attributes id="19" justification="0" size="4" underlined="false">
<text>mitf_name: string
mitf_vorname: string
mitf_sitz_reservier: boolean</text>
</attributes>
<methods id="20" justification="0" size="4" underlined="false">
<text>__init__(...)</text>
</methods>
</ClassNode>
<ClassNode id="21">
<children id="22"/>
<location class="Point" id="23">540.0,200.0</location>
<id id="24" value="6d433bff-b543-4fad-8d53-8f7980b6d035"/>
<revision>1</revision>
<backgroundColor reference="7"/>
<borderColor reference="8"/>
<textColor reference="9"/>
<preferredSize class="Rectangle" reference="10"/>
<name id="25" justification="1" size="3" underlined="false">
<text>&lt;&lt;abstract&gt;&gt;
Fahrschein</text>
</name>
<attributes id="26" justification="0" size="4" underlined="false">
<text>fg: Fahrgast
start_dat: string
end_dat: string
kinderanz: int
von_ort: string
bis_ort: string
rueckfahrt: boolean
sitz_reserv: boolean
preis: double</text>
</attributes>
<methods id="27" justification="0" size="4" underlined="false">
<text>__init__(...)
&lt;&lt;abstract&gt;&gt; berechne_fahrpreis(): double</text>
</methods>
</ClassNode>
<ClassNode id="28">
<children id="29"/>
<location class="Point" id="30">840.0,290.0</location>
<id id="31" value="211d4ff1-9c17-4272-bb42-4e8ff921c101"/>
<revision>1</revision>
<backgroundColor reference="7"/>
<borderColor reference="8"/>
<textColor reference="9"/>
<preferredSize class="Rectangle" reference="10"/>
<name id="32" justification="1" size="3" underlined="false">
<text>Einzelfahrschein</text>
</name>
<attributes id="33" justification="0" size="4" underlined="false">
<text></text>
</attributes>
<methods id="34" justification="0" size="4" underlined="false">
<text>__init__(...)
berechne_fahrpreis(): double</text>
</methods>
</ClassNode>
</nodes>
<edges id="35">
<InheritanceEdge id="36">
<start class="ClassNode" reference="28"/>
<end class="ClassNode" reference="21"/>
<startLocation class="Point" id="37">90.0,80.0</startLocation>
<endLocation class="Point" id="38">30.0,130.0</endLocation>
<id id="39" value="24633b3b-72ab-431b-a925-dcdfbc165753"/>
<revision>1</revision>
<bentStyle name="AUTO"/>
<startLabel></startLabel>
<middleLabel></middleLabel>
<endLabel></endLabel>
</InheritanceEdge>
<AssociationEdge id="40">
<start class="ClassNode" reference="21"/>
<end class="ClassNode" reference="3"/>
<startLocation class="Point" id="41">80.0,130.0</startLocation>
<endLocation class="Point" id="42">20.0,80.0</endLocation>
<id id="43" value="3bd398e3-8779-41a0-9f88-a2873800ab83"/>
<revision>1</revision>
<bentStyle name="STRAIGHT"/>
<startLabel></startLabel>
<middleLabel></middleLabel>
<endLabel></endLabel>
</AssociationEdge>
</edges>
</ClassDiagramGraph>]]></SCRIPT>
<BR />
<BR />
<IMG alt="embedded diagram image" src="
q313pb1e7cXctA1NaCAMBtKxwZiAveCdEITx+BvbmEgouzFYyxpiZ7wezWTEDp7ISYjB2MIgJ8tg
YPIxOCaKiWwkIkQ86zjGshONab7dNJj3GWpcKc6pc2ia/jhV/f9doKefeqrq6arqU//T9DnnR0sR
4/dgLRiHDwAAAHAePzI6wgf2wuDBWAEAAFAC6AZHgLECAACgBNANjgBjBQAAQAmgGxwBxgoAAIAS
QDc4AowVAAAAJYBucAQYKwAAAEoA3eAIMFYAAACUALrBEWCsAAAAKAF0gyPAWAEAAFAC6AZHgLES
+T0AemFc4gCoDHSDI8BYiWA0gE5gPQPNgG5wBBgrEYwG0AmsZ6AZ0A2OAGMlgtEAOoH1DDQDusER
YKxEMBpAJ7CegWZANzgCjJUIRgPoBNYz0Aw1dINrJcbiZ9iXhoWbN2/u3r3b6F03YRwrDcBoAJ3A
egaaoZJuMHpNBBm2HiLURRjHSgMwGkAnsJ6BZqiqG+7fv79///7U1NSkpKSioqIbN27wsP7+/pdf
fjkvL+/zzz/nzoMHD+7atYte+nw+sjdv3tza2sqblbb21VdfUZWUlJS0tDSqMjY2xuJ5rTASxrHS
AIwG0AmsZ6AZquqGV1555YMPPnjy5Mnw8DAVkQ7gYSdPnvziiy/IKCgo4M7u7m5SDPTyv/7rv+jl
pUuX/v3f/503K21t27ZtZN+9e/f69etkUIw0k7AQxrHSAIwG0AmsZ6AZKukGDnMODQ2dOXNm+/bt
5Nm4cSMPm5mZWVxcJCMhIYE7JycnWa0XX3yRXpKGePjwoX1rmZmZZBcVFbW3t8/NzbEwsUoYCeNY
aQBGA+gE1jPQDJV0g+hpaWlxLf/34datW7xUDDM4SUkwv9vtZi8DgQCPkbb2u9/9LjU1lb1MT0/v
6ekxdBFGwjhWGoDRADqB9Qw0Q1XdkJKSQp7pZXipGCZ1El6vl16Oj48/evSIF0lbI548eULv4rXX
XnMtSwdza+EijGOlARgNoBNYz0AzVNUNW7ZsIc/AwMDbb7/NS8UwqXNJ+H1DTU0NL5K2VlpaSsan
n3769ddfk7F9+3ZyPv/88y7hvx7hIoxjpQEYDaATWM9AM1TVDX19fZmZmVlZWfX19bxUDJM6iceP
H5eVlXm9XnY9RXJyslVrjx49Onr0KAmFlJSUn/3sZ6QeyPnhhx96PJ6DBw/yBsNCGMdKAzAaQCew
noFmqKEbwkhGRsb58+dnZmZGR0dJH+zdu9cYEQucOVaxAqMBdALrGWhG3OmG/v7+4uJij8eTlJS0
Z8+eb775xhgRC5w5VrECowF0AusZaEbc6QZngrESwWgAncB6BpoB3eAIMFYiGI0QMPyOx4awPGMl
LI3ECVjPQDOgGxwBxkokzkdjcXGRRqC0tHRVp0jwuiH4SBvERigryo3fIsXGGZ/E+XoG+gHd4Agw
ViJxOxp+v//y5cvsBud8VzY7pY9TYaUUuXnz5r179z5+/HgpiGesMIM/vUXaciAQ+OUvf+n1eqkd
Kn3w4IG0EcqQeqdsWdpSZ3wSt+sZ6Ap0gyPAWInE52j8z//8z6ZNm2iv/dd//Vey//jHP1o5pY9T
Yft0Q0NDW1sbGbW1tUtBPGOF2fzpLdKWf/Ob35BNzQ4MDJDBvvMQG7lz505jYyO7R3tmZibFWznj
k/hcz0BjoBscAcZKJD5Hg+2vH3/88arOJdnjVNhG/vjx4/HxcTK8Xu9SEM9YYbZ4HzNzy3l5eWRP
TEzwmCWLf3ZQnqzHVZ1xRXyuZ6Ax0A2OAGMlEp+jce7cOba//vSnP21paaHt38opfZwKMxYXFxcW
FshISkpaCuIZK7wWeyltmZoSY8SKzKasWltbS0pKXMsqh3K2csYn8bmegcZANzgCjJVI3I6G+FOG
xMREK6f0cSrMePz4sc/ncz37F8PSas9YEe0li5bZ9w1MsnDEipSVy/RTBqkzPonb9Qx0BbrBEWCs
ROJ8NKSXTohO6eNUmPHmm2/SPk1GfX39UhDPWOHVGdKWGxsbyWhtbR0cHHQ9+5GE2Ai7dOLp06e8
HStnfBLn6xnoB3SDI8BYiWA07JE+ToUZH3744aZNm/bs2cO+Hlj1GSu8uk3L8/PzZ86cyc7OpkYO
HDgwNjZmaATYg/UMNAO6wRFgrEQwGkAnsJ6BZkA3OAKMlQhGA+gE1jPQDOgGR4CxEsFoAJ3Aegaa
EVndAILHOHxxDEYD6ATWM9CMyOoGowtYgLESwWgAncB6BpoB3eAIMFYiGA2gE1jPQDOgGxwBxkoE
owF0AusZaAZ0gyPAWIlgNBjsDgocY/Ez7EvXSvCtBR8Z52A9A82AbnAEGCsRjAYjyI05yLAgCW9r
YAnrGWgHdIMjwFiJYDQY5i38/v37+/fvT01NTUpKKioqunHjBg/r7+9/+eWX8/LyPv/8c+48ePDg
rl276OVXX31FRkpKSlpaGjnZPR8DgcAvf/lLr9dLfmr2wYMHVq0tLCycPXs2MzOTgn/xi1/QSx7J
jWvXrv30pz/dvHnzH/7whx8yBljPQDugGxwBxkoEo8HgGzPnlVde+eCDD548eTI8POx69vAqFnby
5MkvvviCjIKCAu7s7u72+Xz0kj0W6+7du9evX3c9e8bEb37zG7Lb2toGBgbIYA+/kLZ27tw5si9d
utTR0UHGr3/9ax7JjTfffPOzzz4jY+vWrT9kDLCegXZANzgCjJUIRoPB9mMOcw4NDZ05c2b79u3k
2bhxIw+bmZlZXFwkIyEhgTvZc6cI9jDuoqKi9vb2ubk55mQPupyYmGAvGdLWmOwgCUJ+MnJzc3kk
N6h0fn7e9SwrwMF6BpoB3eAIMFYiGA0G35g5LS0truX/Pty6dcuwbRuqMIP2fub/3e9+l5qaypzp
6ek9PT3kTEpKEmMMLYg2i+SI0sSqCuBgPQPNgG5wBBgrEYwGw7wHp6SkkGd6GV4qhkmdjCdPntDA
vvbaa65l6bD07PsG9uRMjrQ19nxt6lQaKa0COFjPQDOgGxwBxkoEo8Ew78Fs/x4YGHj77bd5qRgm
dRKlpaX08tNPP/3666/J2L59OzkbGxvJbm1tHRwcdD370YO0tV/96ldktLS03Lx5k4zdu3db9SXa
gIH1DDQDusERYKxEMBoM8x7c19eXmZmZlZVVX19vv20b6j569Ojo0aPPP/98SkrKz372M1IP5Jyf
nz9z5kx2djY5Dxw4wC6ykLbm9/upx/T0dI/HU1FR8f3331v1JdqAgfUMNAO6wRFgrEQwGkAnsJ6B
ZkA3OAKMlQhGA+gE1jPQDOgGR4CxEsFoAJ3AegaaAd3gCDBWIhgNoBNYz0AzoBuMBAIBoyvyKDpW
EQKjAXQC6xloRjR0g1q/r2Y31jUQ6beAI4sIRgPoBNYz0AzoBiMxyRZHFhGMBtAJrGegGVHVDb/9
7W9//vOf8wADFNbc3JyTk5OYmMjrDg0NlZaWejye7Ozsq1ev8sjOzs6MZT7++OPr169TqVhrenq6
qqoqLS2tsrJyZmaG12IGp6+vj2olJSWVlJQMDg6yGH4BOv1tamoqLi4W60qT9Pl8u3fvzszMvHjx
ormXYMCRRQSjAXQC6xloRvR0wzvvvFNdXf306VMxRoTCGhoaZmdne3t7aVdmzoKCAnrp9/s7OjpI
JfDImpoaEgQ9PT20rzc2NpIt1jp9+vTo6CjV6urqOnv2LHOaofi2trbFxUVqJy8vjzlFiUCl7MlA
otOcZF1dHSmMqakpygq6Yf1gNIBOYD0DzYiSbnj//fe3b99OG/mKiJVQ2J/+9Cduryz8888Vxc2b
RS4sLLiEB/rxgC1btlARGaQJ2LP7pOzbt6+qqmpgYIA/IXBppUQw5yN1er3ex48fkzE2NmbOPBhw
ZBHBaACdwHoGmhEl3fDaa6/R5vrw4cMVESsRd1xu+3w+OpWn3T0nJ0fcvPn3FtJa4uP73G43DzBA
m315eTkFeDye4eFh5rTvRdpdYmIikynsOcI8IHhwZBHBaACdwHoGmhEl3UB/W1tbjx8/LpQbkW7J
ZWVljY2N/f39o6Oj9pu3aJNGCf5ySr/f397enpWVxV7a9yJ1bt68mX3f8ODBA+iG9YPRADqB9Qw0
I3q6YXFxcceOHSMjI2KMiHRLTktLGx4enpycrK2ttd+8Rbuuro46IkFw+fLl0tJSHmCgsLCwu7t7
YWGB/UCSOclg/4mQtix1njp16ty5c9PT09Tvhg0beEDw4MgigtEAOoH1DDQjerqBuHHjxv79+3mA
AemW3Nvbm5+f7/V6m5ub7Tdv0Z6YmDh69GhKSsrOnTvv3LljjmTcvn27qKgoISGBtAJJB+asrq5O
Tk5esmhZ6vT5fOXl5RkZGZRkamoqDwgeHFlEMBpAJ7CegWZEQzfECYFAoKWlZe/evcaCIIi3sbIH
owF0AusZaEYMdINLhjFIKWpra9PT091ud1lZ2b1794zFQWA1VvEJRgPoBNYz0IwY6AZgIBAIdHZ2
Gr1xDFYO0AmsZ6AZ0A2x509/+tNf/dVf/fM//3NFRUVLS8vdu3eNEXHG7wHQC+MSB0BloBscwT/9
0z/97d/+7d69e7dt2/b/liHj9OnTf/jDH8R7UsUJWDlAJ7CegWZANziC/Px8Eg1/93d/99FHH9HL
u3fvtrS0VFRUbNy4sa6uzhitO1g5QCewnoFmxItuCP42UDHhP/7jP0g6kGjg0iGecdTKAWCdYD0D
zVBMN/ArL9Z6CUZBQYHRtfZGIkdLS8s//MM/kAHpsBSZlQNArMB6BpqhmG7grHXLX2t8lKGxIt3A
fhEJ6RDRlQNAlMF6BpoRDd0wPT1dVVWVlpZWWVk5MzPDnLSRd3Z2Zizz8ccfX79+PTs7OzExkdca
GhoqLS31eDzkv3r1Kq9lZXDYTaOTkpJKSkoGBwdZDL9LBP1tamoqLi4W65LR3Nyck5MjJuDz+Xbv
3p2ZmXnx4kVzL+GFOs3Pz79w4QJ7GefSAcdZoBNYz0AzoqEbTp8+PTo66vf7u7q6zp49y5y0E9fU
1JCM6OnpoV28sbGR7N7eXv6ciIKCAnpJtTo6Okhb8FoGwwy10NbWtri4SC3n5eUxp1iRSicnJw3O
hoaG2dlZMYG6ujpSGFNTU5SnTXdhgcbq1KlThw4d4p54lg44zgKdwHoGmhEN3bBlyxb2mGnay3Nz
c5mTdmL2+CgqIntiYoL7mcEJBAJmuWAO4+zbt6+qqmpgYEC8glGsyPpd1en1etlTLsfGxmy6Cws0
Vp9++mlCQoLojFvpgOMs0AmsZ6AZ0dANSUlJrme43W7mJPvp06fcZoZo+3w+Ot0nBZCTkyNu8AbD
DG325eXl1JHH4xkeHmZOsaK5X2kCiYmJTO7Mz8/bdBcWaKxI5ZgvuYxP6YDjLNAJrGegGdHQDXTi
br4MUrpVi3ZZWVljY2N/f//o6Kh5g191I/f7/e3t7VlZWeyltKK9c/Pmzez7hgcPHqza3TqxObLE
oXSwGQ0AlAPrGWhGNHQDnUaPjIzQRn758uXS0lLmlG7Vop2WljY8PDw5OVlbW2ve4G028sLCwu7u
7oWFBfYDSeYkg/0nQtqX1Hnq1Klz585NT09T/hs2bOABkcD+yBJv0sF+NABQC6xnoBnR0A0TExNH
jx5NSUnZuXPnnTt3mFO6VYt2b29vfn6+1+ttbm42b/Bmg3P79u2ioqKEhATSCiQdmLO6ujo5OXnJ
oi+p0+fzlZeXZ2RkUAKpqak8IBKsemSJK+mw6mgAoBBYz0AzoqEblCYQCLS0tOzdu9dYEFaCGav4
kQ7BjAYAqoD1DDQDusGS2tra9PR0t9tdVlZ27949Y3FYCXKs4kQ6BDkaACgB1jPQDOgGRxD8WMWD
dAh+NABwPljPQDOgGxzBmsZKe+mwptEAwOFgPQPNgG5wBGsdK72lw1pHAwAng/UMNAO6wRGEMFYa
S4cQRgMAx4L1DDQDusERhDZWukqH0EYDAGeC9Qw0A7rBEYQ8VlpKh5BHAwAHgvUMNAO6wRGsZ6z0
kw7rGQ2HYL6xOohbNFjPAIhANziCdY6VZtKBj0ZfX5/b7ebPXl8V10qMxQL2peunoKDA6ALxyjo/
3QA4DegGR7D+sdJJOvDRYHcKX1xcXFFsTfBqIPjI0Ih0+0Ah1v/pBsBRQDc4grCMlTbSgY2G+LWB
z+fbvXt3ZmbmxYsX+ZZs3pvNHmJoaKi0tNTj8WRnZ1+9epU5KbKrq+snP/kJSRM++ORsamoqLi5e
suhR2hR7fFpSUlJJScng4CBrh2cOQFg+3QA4B+gGRxCusdJDOogbOTPq6upoR5+amqqpqbHZj6VF
BQUFvb29fr+/o6MjIyODOSnyjTfemJuboyL+0FRytrW1TU5OLln0KG2KqlOtxcXFnp6evLw83hQz
AAjXpxsAhwDd4AjCOFYaSAezbvB6vY8fPyZjbGzMZkvmJ/rSmEAgwP1kTExMcJsb7GHrS6v1KDa1
b9++qqqqgYEBUiE8wFwFxC1h/HQD4ASgGxxBeMdKdelg1g10Tr+wsEDG/Py8zZYsLfL5fE1NTbS1
5+TkiBKBB4jOp0+fMlvao7Qpkhfl5eVut9vj8QwPDzOnNBMQn4T30w1AzIFucARhHyulpYNZN2ze
vJmd/T948MBmS5YWlZWVNTY29vf3j46OrqobuFPao7Qpht/vb29vz8rKYi+lmYD4JOyfbgBiC3SD
I4jEWKkrHcy64dSpU+fOnZuenq6rq9uwYQOPNCDdrdPS0oaHhycnJ2tra6USQeqU9ihtqrCwsLu7
e2Fhgf1AkjnJ4P/yAHFOJD7dAMSQyOoGEDzG4QsHikoHPhp8b/b5fOXl5RkZGc3NzampqYZSjtlD
9Pb25ufne71eqiuVCFKntEdpU7dv3y4qKkpISGBXjTJndXV1cnIys0GcE6FPd0RZcWwCYCWR1Q1G
F7AgcmOlonSwGo1AINDS0rJ3715jQcSIfo9AP6zWs5NRMWcQHaAbnEJEx0o56WAejdra2vT0dLfb
XVZWdu/ePUNpJIh+j0BXzOvZ+aiYM4gO0A1OIdJjpZZ0iPRoABBNVFzPKuYMogN0g1OIwlgpJB2i
MBoARA0V17OKOYPoAN3gFKIzVqpIh+iMBgDRQcX1rGLOIDpANziFqI2VEtIhaqMBQBRQcT2rmDOI
DtANTiGaY+V86WA/GoFAwOiyIPhIe9bazlrjgd7Yr2dnomLOIDpANziFKI+Vw6WD/WgUFBQYXRYE
Hym98QMn+HYY0nj7LoDG2K9nZ6JiziA6QDc4heiPlZOlg/1oBL8BhyvSvtTMWuOB3tivZ2eiYs4g
OkA3OIWYjJVjpQMfDXbn5qSkpJKSksHBwaXlLZlB9tDQUGlpqcfjyc7Ovnr1KqtCRU1NTcXFxWKk
lPHx8T179qSmpl65coWHmdsU2zG3Zp+h61kyYl0ympubc3JyqCJ/pz6fb/fu3ZmZmRcvXjT3ApQm
Jp/udaJiziA6QDc4hViNlTOlAx8N2lnb2toWFxd7enry8vKYk2+rBQUFvb29fr+/o6MjIyODl1KV
yclJMVLKiRMnWltbp6enyVi1zR+qrcQ+Q2kyZDQ0NMzOzlJH/HkWdXV1pDCmpqZqampsugMqEqtP
93pQMWcQHaAbnEIMx8qB0oGPxr59+6qqqgYGBubm5nipeVsNBALirswfKGWOFMnOzmY7+tjYmDnS
0ObKwh+wz1CajNTp9XrZ4zelyQClieGnO2RUzBlEB+gGpxDbsXKadOCjQVtpeXm52+32eDzDw8PM
ybdVn89H5+i0befk5Ii78tOnTw2RUhISEhYXF8mYn59ftU1ey4B9htJkxNa4nZiYuLCwsLQyGaAH
sf10h4aKOYPoAN3gFGI+Vo6SDobR8Pv97e3tWVlZ7CXfVsvKyhobG/v7+0dHR+13ZSl0ik8qgYyH
Dx8G36YUqwylyUidmzdvZt83PHjwYNXugFrE/NMdAirmDKKDqrpBv+vjIzdWweMc6cBHo7CwsLu7
m07E2c8PmZMM9j1/WloaneJPTk7W1tZKd2UeKaW+vv78+fPT09MnT57ktaRt2rRjn6FUIkidp06d
OnfuHCVTV1e3YcMGHgA0wAmf7rWiYs4gOjhON9ifafFS6fXxq0JH9ldffdXoFaiqqqIYozcqhDBW
kcAh0oGPxu3bt4uKihISEmgn5lNTXV2dnJxMRm9vb35+vtfrbW5ulu7KPFLK1NTUwYMHs7KyOjs7
eS1pm7wd8/q0z1AqEaROn89XXl6ekZFB/aampvIAoAEO+XSviZjn7DLBncbQNcIb+eCDD7Zu3ZqU
lHTkyBFj0DJh6Y4TfGvBR8YEx+mGIAlhTP1+f15e3vfff28sEKDSbdu2UaSxIPJEbqzWihOkg3NG
I8oEAoGWlpa9e/caC4DKqLieY55z5PZO3jJpfTK+++47q2N+eHMIb2sxxHG6gQ+rS3aNOytlo7/W
Cbhy5Uptba3Ra4JiKNLojTwhjFXkiLl0CO9o8AUjYgyKNbTw0tPT3W53WVnZvXv3jMVAZcK7nqND
zHOWfk65kxnXrl376U9/unnz5j/84Q/cySHPwsLC2bNnMzMzvV7vL37xC/bTY0MYi7x///7+/ftT
U1OTkpKKiopu3LjBI/v7+19++WU67fz888+58+DBg7t27aKXX331FRkpKSlpaWnkHBsbW1o+Afjl
L39JnZKfmn3w4IFVazYZWr3NmONo3WC+xl0sZUbw0OQNDAwYvSYo5sCBA0Zv5AlhrCJKbKWD00YD
gPWg4nqOec5875Q6mfHmm29+9tlnZGzdupXH9PX1kaeyspLsc+fOkX3p0qWOjg4yfv3rX5sbYbVe
eeWVDz744MmTJ8PDw+SkTZoHnDx58osvviCD/X+cObu7u9mvqrdt20Yv7969e/36dTKoHXL+5je/
cS3fu4U2FDJKS0utWgsmQ+nbjCGO1g3ma9zNRvBs2rSJTbM94+PjFGn0Rp4QxirSxFA6OHA0AAgZ
FddzzHNmW6YId3KDDunsuuWNGzeyWnNzc7Tl01n+o0ePlp5t6hQ2MzNDRm5urrkR3uPQ0NCZM2e2
b9/OG2QBVHdxcZGMhIQE7mS3fiEyMzPpZVFRUXt7O7+JS15eHjknJiaetf1npK0Fk6H5bcYWR+sG
G6dYGiT8+nh7AoEA/3ojmoQwVlEgVtLBmaMBQGiouJ5jnjPfO6VOsVS0f/WrX5H9/vvvs5dJSUms
lCFu/IaKLS0truX/Pty6dUsaYHCyW78Qv/vd71JTU5kzPT29p6dn6Vm/PMbQgmgHn6Fox5Y40g2k
Cq0upROhmOzsbKM38oQwVtEhJtLBsaMBQAiouJ5jnrN0m+ROsZTb3377LW3DO3fu5Bv2li1bqGh6
evpZAyvixUZSUlJYJCENkDoZT548oeF67bXXXMvSYenZ9w3j4+NimLS14DMU7diiqm6wuZ7eChKS
n376qdFr4pNPPqmoqDB6I08IYxU1oi8dHDIaa71NyFrjQZzgkPW8JmKes3Sb5E6xlNt06CZD/B0b
+/qhpaXl5s2bZOzevduqEbZ/U923335bGiB1EqWlpfSSNpevv/6ajO3bt5OzsbGR7NbW1sHBQdez
Hz1IWws+Q9GOLarqBvvr8qW0t7fz6ynMDXKDYjo7O5kdTUIYq2gSZemwztEI/tNlH7nW24RI4+27
APHAOtdzTIh5zmybFOFO0TA7OUvLl9/X19enp6d7PB5SFew6fF7KjaXlX1NmZmZmZWVRvDRA6iQe
PXp09OjR559/PiUl5Wc/+xmph6Xlu8WfOXMmOzubnAcOHGAXWUhbCz5D0Y4tjtMNkYOmJycnh/1Y
xgoqzc3NpSk3FkQeR42VlGhKh3WORvCfLvtI+1Iza40HccI613NMUDFnEB2ioRuYSgoGY/3VMNa3
hsVfu3bt2LFjK9tYQWVlZW9vr9EbFZT4lEZNOvDRmJ6erqqqSktLo6mZmZlhTpfs3h7j4+N79uxJ
TU29cuUKn3Ep0sihoaHS0lKS/HSKcPXq1SVhdTFbbGFp+eyEek9KSiopKRkcHDTHNzU1FRcXi3Vd
srR9Pt/u3bvpROfixYvmXoAeKPHpNqBiziA6REM3gGBQZayiIx34aJw+fXp0dNTv93d1dZ09e5Y5
XbJ7e5w4caK1tZV0Bhn2G7A0sqCggFqjjjo6OjIyMpjTph3qt62tbXFxsaenJy8vjzlFiUCl7Eot
0WlOu66ujhTG1NRUTU2NTXdAaVT5dIuomDOIDtANTkGhsYqCdOCjsWXLFnb1LO3Q7MrmpeUN2Hxv
j+zsbLZPj42N2W/A9pGBQEDc6VcW/sC+ffuqqqoGBgb4FdtLKyWCOUOp0+v1ssdgSpMBeqDQp5uj
Ys4gOkA3OAW1xirS0oGPhnhxs9vtZk5xf+V2QkICu/iK3SCFB5iRRvp8PjrvJymQk5Mj7vS8lgHa
7MvLyyklj8czPDzMnGLFp0+fmp3MEG1+W5FV0wbqotanm6FiziA6QDc4BeXGKqLSgY8GnY6bL26U
bsAUye4H+vDhQ/sNWBpZVlbW2NjY398/Ojoq3eml+P3+9vb2rKws9lJa0d65efNm9n3DgwcPVu0O
KIpyn+4lNXMG0QG6wSmoOFaRkw58NOrq6kZGRmh7vnz5MrvH+5LFBlxfX3/+/Pnp6emTJ0/ab8DS
yLS0tOHh4cnJydraWu60uU1IYWFhd3f3wsIC+4Ekc/J4aYZS56lTp86dO0fJ0DvdsGEDDwA6oeKn
W8WcQXSAbnAKio5VhKQDH42JiYmjR4+mpKTs3Lnzzp07zCndgKempg4ePEin/p2dnfa6QRrZ29ub
n5/v9Xqbm5u5k98mxNzg7du3i4qKEhISSCuQdGBOaby9bvD5fOXl5RkZGdRvamoqDwA6oeKnW8Wc
QXSAbnAK6o5VJKSDuqMRGoFAoKWlZe/evcYCoAUqrmcVcwbRAbrBKSg9VmGXDmEZDZcMY1Csqa2t
TU9Pd7vdZWVl9+7dMxYDLQjLeo4yKuYMogN0g1NQfazCKx1UHw0ARFRczyrmDKIDdINT0GCswigd
NBgNADgqrmcVcwbRAbrBKegxVuGSDnqMBgAMFdezijmD6ADd4BS0GauwSAdtRgOAJTXXs4o5g+gA
3eAUdBqr9UsHnUZDxHwPKxAPqLieVcwZRIeI6wYQPMbhU5l1Sgc+GuYrIMweK4KPDCP2nRYUFBhd
IA5Q8dO94tgEwEoiqBtAPLMe6fB7a90QPOupGyEcmBKIAnw9K4SKOYPoAN0AIkjI0sGsG37729/+
/Oc/Fz1kNDc35+TkJCYm8vjx8fE9e/akpqZeuXKFR05PT1dVVaWlpVVWVs7MzPDqTU1NxcXFZA8N
DZWWlno8nuzs7KtXr/IAQ/vLN4D4Cxs3bmQeFsyxSY/XFeNBPKDiHqxiziA6QDeAyBKadDDohnfe
eae6upo9YVLcmBsaGmZnZ3t7e/kTIk6cONHa2kpCgQweefr06dHRUb/f39XVdfbsWV69ra2NPVC7
oKCAGqGAjo6OjIwMHmBun0GCo7GxUfRw7NODaIhPVNyDVcwZRAfoBhBxQpAOom54//33t2/fTps6
93CDP3SKO7Ozs5kUGBsb484tW7awZ1UvLi7m5ubyKuZnVgUCAfv2l5a/nKioqGBP4jZjXx26IT5R
cQ9WMWcQHaAbQDRYq3QQdcNrr73m9XofPnzIPQZDtBMSEtiOPj8/z51JSUmuZ7jdbl6FfYGxtPxw
qaampqqqqpycHPv2Z2ZmysvLx8fHeZEB++qiE8QPKu7BKuYMogN0A4gSa5IOom6gv62trcePHxc9
oiHapDBIBJBBOkN0mi+AFKuXlZU1Njb29/ePjo7at3/ixIlbt25xvxn76tAN8YmKe7CKOYPoAN0A
okfw0sGgGxYXF3fs2DEyMsI9oiHa9fX158+fn56ePnnyJHfW1dVRXb/ff/ny5dLSUkMVIi0tbXh4
eHJysra21qb9rq6uM2fOcKcUm+pEYmKi+Z8jQHtU3INVzBlEB+gGEFWClA4G3UDcuHFj//79oke6
MU9NTR08eDArK6uzs5M7JyYmjh49mpKSsnPnzjt37hiqEL29vfn5+V6vt7m52ab93Nxcl4AhRowU
DdGurq5OTk7mfhAnqLgHq5gziA7QDSDaBCMdcMwCOqHielYxZxAdoBtADFhVOuCYBXRCxfWsYs4g
OkA3gNhgLx1wzAI6oeJ6VjFnEB2gG0DMsJEOOGYBnVBxPauYM4gO0A0gllhJBxyzgE6ouJ5VzBlE
B+gGEGOk0gHHLKATVuv5j3/8o9HlGKxyBgC6AcQes3SI1THLfHsoe9YaD+IT83qmldPQ0PA3f/M3
Br9zMOcMAAO6ATgCg3SI1TGroKDA6LJFGm++qQOIcwzr+bPPPvvxj3/s9Xp/9CPnHn5j9RkEzge6
ATgFUTrE6pi11i1/rfEgPuHr2efz7d279x//8R9bW1vpJXQDUBHoBuAguHRgx6y8vLxvv/2WjPv3
7+fn5y8t3/nx8OHDqampR44cIZvVos27ubk5JycnMTHR/mBnVb2pqam4uNj+RpB9fX3UflJSUklJ
yeDgIIsR41kjYl2XLDHaOXbv3p2ZmXnx4kVzL0BL2OyTViDFQLqBPUJlCboBqAl0A3AWTDr893//
N9mnT59ua2sj49KlS2fPniWjoaHhwoULMzMztB/X19ezKrT7kn92dra3t5d2aKExI1bVqRf29G2b
jZxaprDFxcWenh4SNMwpSgRzI9LE6urqSGFMTU3V1NTYdAd04sMPP/R6vT/+8Y8/++wz0Q/dAFTk
z7rh90B3jNPubEg6/P3f/z3t7jdu3KisrCRPVVXVl19+SQadu7PvCegvHYhZPO2+/GFR9jvxeqrv
27eP0hgYGJibm+NOUSKYG5E6qd/Hjx+TMTY2ZtMd0Ia7d+/+9V//9b/8y7+QgjQU/cjZGI8jADzj
z4vDsJqBTqg4v11dXfR3fn7+hRde8Pv927ZtoxN98iQlJTGD/vIzeHH3td+Jrao/ffqU2zzYAG32
5eXlbrfb4/EMDw8zpygRzI1IE6N+FxYWlpbfnU13QCfef/99fN8AtAG6QX9UnF+ec2Vl5VtvvVVT
U8Ne0sF3ZmZmaflXApmZmcwp3Z6lrLM6QSKmvb09KyuLvbSXCFLn5s2b2fcNDx48WLU7oAdsPeP3
DUAPoBv0R8X55TnTJk2ba19fH3tZV1fX2dk5Ozvb3Nx8/Phx5pRuz1JWrZ6YmMj/s2CgsLCwu7t7
YWGB/UCSOXm8NAep89SpU+fOnZuenqZkNmzYwAOAxvD1jOspgAZAN+iPivPLc/7uu++ee+45/o/h
8fHxQ4cOeTyeAwcOkM2c0u1ZyqrVq6urk5OTDU7G7du3i4qKEhISSCtwHSONt9cNtHOUl5dnZGSQ
dklNTeUBQGMMn0HcvwEoDXSD/qg4vyrmvCYCgUBLSwudehoLgI6Y1zPuFwnUBbpBf1Sc33Xm7JJh
DIoRtbW16enpbre7rKzs3r17xmKgI1brGc+nACoC3aA/Ks6vijkDYIWK61nFnEF0gG7QHxXnV8Wc
AbBCxfWsYs4gOkA36I+K86tizgBYoeJ6VjFnEB2gG/RHxflVMWcArFBxPauYM4gO0A36o+L8Rj/n
QCBgdNmy1ngQz0R/Pa8fFXMG0QG6QX9UnF+es/Q6CKlznRQUFBhdtkjjI5EY0AClP4MAGIBu0B8V
59deN0SCtXa01ngQzyj9GQTAAHSD/qg4v6JuGBkZ2bFjR0VFBXuUJXMyg93yOSkpqaSkZHBwkDml
UN3Dhw+npqYeOXJEbKepqam4uFi8x4NZEJh7McSzRsS6ZDQ3N+fk5FBF/l58Pt/u3bszMzMvXrxo
7gVojNKfQQAMQDfoj4rzK+qG119/fXZ2tr+/v76+njuZQbtyW1vb4uJiT09PXl4ec0ppaGi4cOHC
zMwMbediO1R9cnKS2SsqCEh7ESWCuREyqEdKu7e3lz/Moq6ujhTG1NRUTU2NTXdAP5T+DAJgQA3d
sHxq92cePXpEL2/dusU9vJSMmzdv0vkcq/LBBx9s3bqVzhHp/FJo6Qd4Le1x/vyaEXXD2NgYGU+e
PHnxxRe5kxn79u2rqqoaGBiYm5tjHivo1J99zUB/vV4vc1I7/ClWNotB2guPlzYidVK/7EmY9I5s
ugP6ofRnEAADiumG//3f/6WX7777LveYw5hNJ3lkf/fdd36/X4zhmKvrivPn14yoG9gM0uk+qUDu
ZAZtw+Xl5W632+PxDA8PM6cUqkstLC23w78AoHaePn3KbR5sQNoLj5c2IrYmrsmFhQUy5ufnbboD
+qH0ZzDs4Fok1VFJN+Tm5tbV1dFLOvnbunUrc/JSKyjg/v37+/fvT01Npc2jqKjoxo0bvFZ/f//L
L7+cl5f3+eefc+fBgwd37dpFL+kof/bs2czMTDpT/MUvfsEO+oYY5+P8+TUj6oabN2+SQef6OTk5
3Pks8M+QsGhvb8/KyhKdBmgGZ2ZmlpZ/ZEATypxiO4Y2zRh64fHSRqTOzZs3s+8bHjx4sGp3QCeU
/gwGj/2q5qXSa5FWpa+v79VXXzV6BWhf4A+qBRFFJd3w+uuv5+fn08vs7Ozjx48zJy8VDYP9yiuv
fPDBB0+ePKGTRXLS4ZsHnDx58osvviCDLWXm7O7upt2FXp47d45eXrp0qaOjg4xf//rX5hjn4/z5
NSPqhpKSEtryP/roozNnznAnMwoLC2kiSM+xny4ypxRSnJ2dnbOzs83NzbR4mJO3s7T8ZQD/z4IB
aS88XmyE21LnqVOnaEVNT09TMhs2bOABQHuU/gyGHfHTESSk2uns7vvvvzcWCFDptm3brL5gBmFE
Jd1AZ3v0l/244cqVK8zJS0XDYBNDQ0O062zfvp2cGzdu5AG0IS0uLpKRkJDAnew3bgStQnpJ+oDC
XMtfeJhjnI/z59eMqBtGRkZeeumlY8eOsS8MmJMZt2/fLioqormjXdz+VGN8fPzQoUMej+fAgQNk
Mydvh6iurk5OTjY4GdJepPHcljppIZWXl2dkZJB2SU1N5QFAe5T+DAaPuP7N1xOxUnb8NH/K7KED
fm1trdFrgmIo0ugF4UYl3fB///d/9PfIkSP09+7du3zxmQ2D3dLS4lr+zwL/QaVVMDPYP8KXlv8p
zjwMUVvwGOfj/Pk1o2LOQRIIBGhB7t2711gA9EXF9RxCzi7hiGq+nkgsZUbw7N+/f2BgwOg1QTF0
YmD0gnCjkm4gY9OmTRs2bKC/otNsGOyUlBSyp5exDxadxJYtW1zLFblnyRTjfJw/v2ZCzpnNjgFj
UIygk6H09HS3211WVnbv3j1jMdCXkNdzDAkhZ/5Zc8muJzIbwUPH/GD+Lzw+Ps52BxBRFNMNlZWV
ZBw7dkx0cuP55593PfsPAncuPdv+SYq+/fbb5lrSphi/+tWv6CWdHd68eZMMdpGnIcb5OH9+zaiY
MwBWqLieQ8hZPKLaOEM4fvJrkewJBAL2v3MCYUEx3fDee++RQX9FJzc+/PBDj8dz8OBB0bm0/EPc
zMzMrKys+vp6cy1pUwy/309V6ByRmq2oqGC/yjHEOB/nz68ZFXMGwAoV13MIOYtHVBtnCMdPOoBb
/WxZhGKys7ONXhBu1NANYD2oOL8q5gyAFSqu5xBylioDs9Pm2iUr6Gzw008/NXpNfPLJJ3SCZ/SC
cAPdoD8qzq+KOQNghYrrOYSczRJB6uTXIgVPe3s7v57C3CA3KKazs5PZIHJAN+iPivPr/JxxzzsQ
PM5fz2YclbPf78/JyWHPGbCCSnNzc+fn540FINxAN+iPivMb9pzN/1Lt6+tzu91nz541+BnmeAM2
97xbta4966wOHEjY13MUYDm7gsZYfzWM9a1h8deuXWO/iLeisrKyt7fX6AURALpBf1Sc37DnzI8+
HHYTJ6v7cJjjDdgE2BQFwzqrAwcS9vUcBVTMGUQH6Ab9UXF+ec60iTY1NRUXFzObB3B7enq6qqoq
LS2Nzjb4DSW/+eabwsLCTZs28d9S8fjf/va3P//5z8VTmaGhodLSUo/Hk52dffXqVR7f1dX1k5/8
xHDDO5aMWJ39FXEt3+Nyx44dFRUV7CGcS8vP4Tx8+HBqauqRI0fsnbxB6VuzytZ8ez7gHFScFBVz
BtEBukF/VJxfcatua2vj9+TgAdw+ffr06Oio3++nbZ7/04G223feeef69etbt24V48lZXV3NHl/J
WygoKOjt7aUWOjo6MjIyePwbb7wxNzdnuOGdNBkDruVnqczOzvb399fX1zNnQ0PDhQsXaPunDd7e
af/WrLI1354POAelP4MAGIBu0B8V51fUDeYbz4n2li1b2A1hFhcX2QNECNpQ2ZMnORT//vvvb9++
nT/2xrzxBwIB7iTD/AWAVTIGqGhsbIyMJ0+evPjii8yZk5PDGqS/Xq/Xxmn/1jiGbINJDMQKpT+D
ABiAbtAfFedX1A3s6wFm8wBui88QcbvdzJmQkGD44QKVvvbaa7Q3P3z4kHuY4fP5mpqaqqqqaBcX
d2JmiLZVMgaoiKkTyoHSY04yWEr0l38lIHXav7XgswXOQenPIAAGoBv0R8X5FXUDd3J7fHyc2yQF
zJdEZmZmGu5mz+JbW1vND9EuKytrbGzs7+8fHR2134mlTjNUdPPmTTLm5uZod2dOypP9RoESo/Rs
nPZvLfhsgXPQ5jMYdiLR+DovlQqNVZulrF599VVS/PZP7hVZtU0z0ipS53qAbtAfFedXesxiV0DQ
ZlxXV8f9ZI+MjND5/eXLl0tLS5mTPpwXL16kzdvw+wY6rd+xYwfFcw+RlpY2PDw8OTlZW1trvxMb
krG65x2FlZSUkCD46KOPzpw5w5yUZ2dn5+zsbHNzM9cuUqf9Wws+W+ActPkMhp1INL7OS6UiAX2K
8/Lyvl9m27Zt/L+l9oSQqrSK1LkeoBv0R8X5lR6z2I/+0tPTL126xP0TExNHjx5NSUnZuXPnnTt3
mPObb77Zvn07ncHTeTnz8PgbN27s379f9FCz+fn5dHJPm7f9Tiw6+T3vzJ9J1/L1FC+99NKxY8f4
dRDj4+OHDh3yeDwHDhwg28Zp/9aCzxY4B9U/g+brg6QX+7iEq5+kAdILnaQXLpmvD5I2aMb1jCXr
i4+kPYrXbXV3d1NHu3btEn82ZP/W+OeOJAu1nJSURCcPg4ODzHnlyhV+v0sy6KWhFoeOA3v27ElN
TaUYXmp/4ZVou2STxUulmYcAdIP+qDi/KuYMgBUqrmdxTzVfHyS92MclXHAkDZBe6CS9cMl8fZC0
QSl8m7S6+Ejao3ipFL3fqakp0i7iza3t3xrvlNqkyMXFxZ6enry8POakc5WBgQFmk0HnCcw2c+LE
idbWVtrgyeBt2l94JdrSyeKl0sxDALpBf1ScXxVzBsAKFdezqBvM1wdJL/ZxCdf1SAOkFzqZT4vF
drhT2qAUcUNlrPVSqXv37i0tn+VnZWWZA6SZ8Kb27dtH8ojEAUkT5iE2bdrEf3E1Pj5OL3mRgezs
bKZOaMx5m/YXXom2SzZZIYyhPdAN+qPi/KqYMwBWqLieRd0gvT7I9Qx+sY9LuOBIGiC90MlsS53S
BqXwKsFffORaeakUe8gFbbHiFxL2b403RcKovLyc/B6PZ3h4mDmpHbZhLy2LGN6sGT5ElANv0/7C
K9F2ySZLbMeceQj8RTcAvTFOu+NRMWcArFBxPfOcXRbXB5kv9hF3MmmA1YVOBlvqlDYohVcJ/uIj
g5M9QItSNZ+yL1lkIgYsLf8Qsr29nX9dQW+cf11BRnZ29g+hK6HG2RA9fPhQfO82F16J15e5ZJMV
whja83t836A9Ks6vijkDYIWK61nUDdLrg8wX+4h7pzTA6kIngy11ShuUwqsEf/GRwdnQ0EDv9913
333jjTfMAdJMeEBhYWF3d/fCwgL7gSRzHjx4kP8U9JNPPqmoqGC2mfr6+vPnz09PT588eVJ87+YL
r9hlI4bry6STFcIY2gPdoD8qzq+KOQNghYrrWdQN5uuDpBf7iJurNMDmQifRljqlDUrhVYK/+Mjg
fO+996gj6o72b3OANBMecPv27aKiooSEBLavM2d7e7t4PQWJAEMtztTUFImMrKwsiuGl0guvpNeX
uWSTFcIY2gPdoD8qzm+QOYflOzcAIk2Q69lRqJhzWDDv5euHTvFzcnIeLZObm8t+P6Eu0A36o+L8
2ufMP9gFBQUrS5zIOg9D66wOnID9enYmzs/ZJcMYtHbC0oiZa9euHTt2rLKysre311imGtAN+qPi
/AaZc4Q+4eFlnUmuszpwAkGuZ0ehYs4gOkA36I+K88tzlt58jW2lK84ynrFx48ZnbRhxrXbHN2lf
0kjeVF5e3rfffkue+/fv5+fnsyIWw3HJ7uAmvQGc1MkblGZidUc88+32QAxRcRZUzBlEB+gG/VFx
fnnO0puv8a3UsEnTXt7Y2Ch6RFyr3fFN2pc0kjdFpWSQ59KlS1b3X3PJ7uAmvQGc1MnfozQTqzvi
mW+3B2KI0p9BAAxAN+iPivPLc5befE2qG+jMm07orR5ms7QcbH/HN2lf0kje1I0bN+jsf2n5ArMv
v/yS1xJxye7gJr0BnNTJ36M0E47hjnjm2+2BGKL0ZxAAA9AN+qPi/PKcpTdfM+sGOkenMH6FkhTX
and8k/YljeRNzc/Pv/DCC3S6v23bNivJ4pLdwU16Azip0/XsPUozCf6OeCCGKP0ZBMAAdIP+qDi/
hpz9K2++Zt4gT5w4cevWLWZbIe6gNvdNM/QljRSbqqysfOutt2pqaoTyFbhkd3CT3gBO6uR9STMJ
/o54IIZo8BkEgAPdoD8qzi/PWXrzNb4XkudPf/pTV1cXvzOaDeIOKr1vmrQvaaTYFIkMeslv8GLG
JbuDm/QGcFIn70uaSfB3xAMxROnPIAAGoBv0R8X55TlLb77G98Lq6urk5OTc3FyXACsyIxZJ75sm
7UsaKTb13XffPffcc7TZm4u4x3wHN+kN4KRO3qA0k+DviAdiiNKfQQAMQDfoj4rzq2LOAFih4npW
MWcQHaAb9EfF+V1Pzj988yBgDAIgiqxnPccKFXMG0QG6QX9UnF8VcwbAChXXs4o5g+gA3aA/Ks6v
ijkDYIWK61nFnEF0gG7QHxXnV8WcAbBCxfWsYs4gOkA36I+K86tizgBYoeJ6VjFnEB1C1A3m+884
GbWyDTshzG/MUTFnAKxQcT2rmDOIDmvTDfx36QUFBczo6+tzu91WT/RxCDxbkfj5jX3w8+sc1pnz
eiY3hLrSKlIniE/WuZ5jwu8BsGYNuoHDj4nsDjlWd+Z3CHF+BA9hfmNODHMOYbVIq0idID6J4XoG
IBL8oBvoSNfZ2ZmxzMcff3z9+vXs7GxSBmIA+2vgLy2ZoKLm5uacnByxkaGhodLSUo/HQ41fvXqV
R9p3PT09XVVVlZaWVllZyW+6Z+6a3SE4KSmppKRkcHCQxfAk6W9TU1NxcbFYV5qkz+fbvXt3Zmbm
xYsXzb2ohYrHLHHJdXd307zv2rVLfMYjn0f7hWFeD2IpZ3x8fM+ePampqVeuXOGlExMThw8fJueR
I0fYYyqXVtYVl9DIyMiOHTsqKirMkdIMQVyh4mcQABtW6Iaamho6tPX09NBBubGxkeze3l7zcwHM
hhQqbWhomJ2dFRspKCigl36/v6Ojg1QCj7Tv+vTp06Ojo1Srq6vL5t8iFN/W1ra4uEjt5OXlMaeY
LZVOTk4anOYk6+rqaGeampqirOzfo/NR8ZglrsnXX3+dJoK0XW1tLXfyeZQuDD5l0vVg5sSJE62t
rbTBk8Hr0qq4cOECrUPqur6+njnFxSAuIUqSllB/f785UpohiCtU/AwCYMMK3cBO6RYWFsg2nznZ
GFJ4g8xeWfjnnyuK7dh3vWXLFipaWn7EcG5uLnOa2bdvH53bDQwMzM3Ncae5l1WdXq/38ePHZIyN
jZkzVwsVj1nimrx3797S8tm/+DxMPmXShcGnTLoezGRnZzMVIk53Tk4OW4f0l9YDc4qLQVxCVJGM
J0+evPjii4ZSaYYgrlDxMwiADSt0w9OnT7nNI8Tjo5UhRdqIz+ejU3k6mtNxWWzHvuukpCTXM9xu
Nw8wQJt9eXk5BXg8nuHhYea070XaHZ2nsmP9/Py8GKAiKh6zxDVJU7C0LCjF7734PEoXBp8y6Xow
k5CQwH6jI043tcyc9Nf8lZtok+H3+1kk1TKUSjMEcYWKn0EAbFihG7hXatsYUqSNlJWVNTY29vf3
j46OStuR2nTCF/zllHQQb29vF09PDcaqzs2bN7PvGx48eGD/Hp2PiscscU0+evRoaVlumk/llywW
hmHKDOvBDDVC7ZPx8OFDccmxnyNQUWZmJnPy0vHxcXEJ3bx5k4y5uTlSw4ZIaYYgrlDxMwiADaHo
Bjr9Yl8U2++p0kbS0tLozG9ycrK2ttbcspVdV1c3MjJCG8Dly5dLS0t5gIHCwsLu7m46N2U/iGNO
abb2XZ86dercuXPT09PU74YNG3iAiqh4zBLXZENDA+3f77777htvvMGdPFK6MHiAdD2Yqa+vP3/+
PE33yZMnxSXX2dk5Ozvb3Nx8/Phx5kxcvoCI9AGVikuopKSEkvzoo4/OnDnDncyQZgjiChU/gwDY
EIpuqK6uTk5ONoSZkTbS29ubn59PJ2F0ODa3bGVPTEwcPXo0JSVl586dd+7cMUcybt++XVRUlJCQ
wI7vzCnN1r5rOsUsLy/PyMigJFNTU3mAiqh4zBLX5HvvvUfzTrNP+zp38kj7hSFdD+ZlMzU1dfDg
waysLBIKvHR8fPzQoUMej+fAgQNkMyf78Wx6evqlS5fEJUTK4KWXXjp27Jj5mg5phiCuUPEzCIAN
ody/IU4IBAItLS179+41FiiFivMr1bIAKIqKn0EAbAiDbnDJMAYpRW1tLZ1Tut3usrIy9nt+dVn/
/EYf6AagEyp+BgGwIQy6ATgZFedXxZwBsALrGWgGdIPmqDi/KuYMgBVYz0AzoBs0R8X5VTFnAKzA
egaaAd2gOSrOr4o5A2AF1jPQjFB0g973sdHs3YUwvzFHxZwBsALrGWjGGnQD/3F7QUEBM/r6+txu
t2ZP6+HvTkTdH/YHP7/OQcWcAbAC6xloxhp0A4dvoux2Ouw2/tqgrkSQEsL8xhwVcwbACqxnoBkr
7hfZ2dmZsczHH398/fr17OxsUgZiAPtr4C8trSQvL+/bb78l4/79+/n5+UvLN847fPhwamrqkSNH
xCdeNjU1FRcXM7u5uTknJ0fsdGhoqLS01OPxUDJXr17ltexTnZ6erqqqSktLq6ysNN/Cj8NuP5yU
lFRSUjI4OMhi+Jsy5MaqSJP0+Xy7d+/OzMy8ePGiuZfYouIxS8WcAbAC6xloxgrdUFNTQ7tsT08P
bZaNjY1ksxvr8gArw8zp06fb2trIuHTpEvtHRkNDw4ULF6hN2nfr6+tZGLVAYewpxq7lhxHMzs6K
nRYUFNBLv9/f0dFBKoHXsk+Veh8dHaVaXV1dNv9GoXjqfXFxkdohocOc4rsTc+NOc5J1dXWkMKam
pigrmzGJCSoes1TMGQArsJ6BZqzQDez5TwsLC2SLXwmsapi5ceMGneuTQef9X375JRl0js7apL9e
r5eF8U7NNjM4gUBA7Nc+1S1btrAHYZMmyM3NZU4z+/bto/QGBgbm5ua409zLqk56O+z5mWNjY+bM
Y4uKxywVcwbACqxnoBkrdMPTp0+5zSPELdPKMDM/P//CCy/QGf+2bdvYDyCSkpKYQX/F7zDsO/X5
fHQqT7s7yQ6xX/ta1JfrGW63mwcYoM2+vLycAjwez/DwMHPa9yLtjt4Okyn0rsUAJ6DiMUvFnAGw
AusZaEYoz8M0G1IqKyvfeuutmpoa9pJOytlPDUgKZGZmMqe0I9EuKytrbGzs7+8fHR2V9iu1qa/g
L6ckcdPe3p6VlcVe2vcidW7evJl93/DgwQP7MYk+Kh6zVMwZACuwnoFmhKIb6PSafVdvv0fSZkwB
/PnFdXV1nZ2ds7Ozzc3Nx48fZ05pR6KdlpY2PDw8OTlZW1trzsTKpr5GRkZIEFy+fLm0tJQHGCgs
LOzu7l5YWGA/kGRO6buz7/rUqVPnzp2bnp6mfjds2MADnICKxywVcwbACqxnoBmh6Ibq6urk5GRD
mJnvvvvuueeeI6HAXo6Pjx86dMjj8Rw4cIBs5pR2JNq9vb35+fler5fUhjkTK3tiYuLo0aMpKSk7
d+68c+eOOZJx+/btoqKihIQEdkEpc0rfnX3XPp+vvLw8IyODkkxNTeUBTkDFY5aKOQNgBdYz0IxQ
7t8ApAQCgZaWlr179xoLYoqK86tizgBYgfUMNCMMusElwxikNbW1tenp6W63u6ys7N69e8bimLL+
+Y0+KuYMgBVYz0AzwqAbgJNRcX5VzBkAK7CegWZAN2iOivOrYs4AWIH1DDQDukFzVJxfFXMGwAqs
Z6AZ0A2ao+L8/h4AvTAucQBUJhTdEPwtlWwISyNgVUKY35ijYs4AWIH1DDRjDbqBXyVRUFDAjL6+
PrfbbfPgKDPmRpzDei4DWU/dpXVXtyH4+XUOKuYMgBVYz0Az1qAbOHyTY7dLYk+dWCuR2yljwjrf
zjqr2xDC/MYcFXMGwAqsZ6AZK+4X2dnZmbHMxx9/fP369ezsbFIGYgD7a+AvLZlgN29OSkoqKSkZ
HBxkThZvbGKZjRs3rqgvQKVNTU3FxcVkT09PV1VVpaWlVVZWsgdeLFn0JY3kTeXl5X377bfkuX//
fn5+PisKpqIYySHPyMjIjh07Kioq+PM5yTh8+HBqauqRI0fsnfZdDw0NlZaWejwempGrV6/yKs3N
zTk5OeIcmbEpciwq5gyAFVjPQDNW6Iaamhraq3p6emh3bGxsJLu3t1d8dqWVIYUqtrW1LS4uUoO0
STOnVV3akqlH0SNCwdTU5OQk2adPnx4dHfX7/V1dXfxfJNK+pJG8KSolgzyXLl1ipTwl+4rspQEq
ff3112dnZ/v7++vr65mzoaHhwoULNIy0wds77bsuKCigiSBnR0cHqTpehZqiHsU5MqPiMUvFnAGw
AusZaMYK3cCe57SwsEC2+VTYxpCyb98+OnUeGBiYm5vjTmldOp+m03Sb/3fw3IgtW7awh1ZTfG5u
LnNK+5JG8qZu3LhB5/RkUMUvv/ySFQVTUQqVjo2NkfHkyZMXX3yROXNyctgw0l+v12vjtO+aEwgE
xAHk+dhMhIrHLBVzBsAKrGegGSt0w9OnT7nNI8w7vdmQ8vjx4/Lycrfb7fF4hoeHmdNcl868KYw/
6UqKmFtSUpLrGdQ4c0r7kkbypubn51944QU6id+2bRuTLK5nKdlXlEKl1NTS8n5P1ZmTDNYy/eVf
CUid9l37fL6mpibSN6Q5eCQ3DLYBFY9ZKuYMgBVYz0AzQnkeptmwgXbT9vb2rKws9tJc98SJE7du
3WK2FWJHdI5udQ2noS9ppNhUZWXlW2+9VVNTYyhataIZKr158yYZc3NztLszJ7XDfqNAG39mZqaN
077rsrKyxsbG/v7+0dFR8wAabAMqHrNUzBkAK7CegWaEohvoLJl9Q26zXRGFhYXd3d0LCwvsR4vM
aWikq6vrzJkzP9SxQOyorq5uZGSEJMLly5dLS0uZU9qXNFJsikQGveRP0OZFq1Y0Q6UlJSUkCD76
6CP+jqidzs7O2dnZ5ubm48eP2zjtu05LSxseHp6cnKytrTVPh8E2oOIxS8WcAbAC6xloRii6obq6
Ojk52RBm5vbt20VFRQkJCexyTeY0NJKbm+sS+KHySsSiiYmJo0ePpqSk7Ny5886dO8wp7UsaKTb1
3XffPffcc7SFG4pWrWhO1bV8PcVLL7107Ngxfh3E+Pj4oUOHPB7PgQMH+D9ipE77rnt7e/Pz871e
L0kNHmmfD0fFY5aKOQNgBdYz0IxQ7t8AFELF+VUxZwCswHoGmhEG3fDsy4IVGIOCw9jKMsYgsBbW
P7/RR8WcAbAC6xloRhh0A3AyKs6vijkDYAXWM9AM6AbNUXF+VcwZACuwnoFmQDdojorzq2LOAFiB
9Qw0A7pBc1ScXxVzBsAKrGegGdANmqPi/EYuZ/M9tQCINJFbzwDEBOgGzVFxfkPI2f66G15aUFCw
siQo+vr6Xn31VaNXoKqqit81BAADIaxnAJwMdIPmqDi/kcvZXl5I8fv9eXl533//vbFAgEq3bdvG
HlACgIHIrWcAYgJ0g+aoOL8h5MwFARnNzc05OTmJiYm8HVYa2h1Brly5Ultba/SaoBiKNHoBCGk9
A+BkoBs0R8X5DSFnUTc0NDTMzs729vaan4qyVtFA7N+/f2BgwOg1QTEHDhwwegEIaT0D4GSgGzRH
xfkNIWdRGbCHrhmcBiN4Nm3a5PP5jF4T4+PjFGn0AhDSegbAyUA3aI6K8xtCzlJlYHaGoBsSExMX
FhaMXhOBQIB/vQGASAjrGQAnA92gOSrObwg5S5WB2RmCbsjMzORfYNhAMdnZ2UYvACGtZwCcDHSD
5qg4vyHkLFUGZmdiYmIwIkDk4MGDn376qdFr4pNPPqmoqDB6AQhpPQPgZKAbNEfF+Q0hZ7NEkDqr
q6uTk5N5QDC0t7fz6ynMDXKDYjo7O5kNgEgI6xkAJwPdoDkqzq+jcvb7/Tk5OY8ePTIWCFBpbm7u
/Py8sQAAh61nANYPdIPmqDi/LGdX0Bjrr4axvjUs/tq1a8eOHVvZxgoqKyt7e3uNXgCWUfEzCIAN
0A2ao+L8qpgzAFZgPQPN+LNuAHpjnHPHo2LOAFiB9Qw0A983aI6K86tizgBYgfUMNAO6QXNUnF8V
cwbACqxnoBnQDZqj4vxGP+dAIGB0Bc166oJ4IPrrGYCIAt2gOSrOb7hy5hdErEpBQYHRFTTrqRt8
hiEQicb7+vrcbvfZs2eNBctEoselIJqlrF599dWqqioyjGUWrNqmGWkVqdNAuNYzAA4BukFzVJzf
cOUczDGdEXykmVjVXZVINJ6YmEh78+LiorFgmUj0uCp+vz8vL+/7ZbZt20YvjREyQkhVWkXqNBCu
9QyAQ4Bu0BwV59eQ88zMzOXLl//t3/7Nxjk0NFRaWurxeLKzs69evcqcdEwfGRnZsWNHRUXFxMQE
c9K2R5tfUlJSSUnJ4OAgC2Mwu6mpqbi42KrNb775prCwcNOmTezm02JdSoZSosRYJEPq5EgznJ6e
plPntLS0yspKXlFMTBpgSIxV6erq+slPfkLvlw8pOZubm3NyckSntEEz4puVDo5Vjzxzsru7u6mj
Xbt2iY8ttX9rrMcl2dwRV65c4Tf0JINeGmpxxsfH9+zZk5qaSjG8lIb98OHD5Dxy5AifArEut12y
yeKl0swZKn4GAbABukFzVJxfnvPw8HBdXR1tcqdOnaJDto2zoKCgt7eXzjU7OjoyMjKYk47pr7/+
+uzsbH9/f319PXPSxtPW1kZnzD09PXSeyiO5QaWTk5NLFm3S3vDOO+9cv35969athrqUDKWUm5tL
6VGSNk6ONMPTp0+Pjo5Sv7QH8/8IiIlJA6SJvfHGG3Nzc/Qu+LM6ydnQ0EA9ik5pg1L4m5UOjlWP
PHP2fqempki7iHfvtn9rvFPp3O3fv39gYIDZZBw4cIDZZk6cONHa2kobPBm8TRqNCxcu0E5PKfEp
4KWiLZ0sXirNnKHiZxAAG6AbNEfF+RVPVY8fP077kFgqdXICgYB4oB8bGyPjyZMnL774InPu27eP
tljaYMQWxCrmB1+JbdIe+fjxY7FU3GMIapbSC8a5ZJHhli1b2JO7aYMkwcEjeWLSAGli5tNisR3u
lDYoxfwWDAO+ao/37t1bWj7Lz8rKMgdIM+FNSedu06ZNPp+P2ePj4/SSFxnIzs5m6oTGnLdJApTl
TH+9Xi9zim9TfCPmyQpmDFX8DAJgA3SD5qg4v+L3Df/5n/9JR+E333xT/L7B7KSdo6mpiTYV2gbE
Az37bzcdypOSkpiTNtfy8nK32+3xePgXAGKVp0+fMlvaZkJCguG/+7yIkqGUKDFKT/y+wezkSDMk
w/UMypNH8sSkATaJibbUKW1QCq8iHRxp4y4hc7LZUzxoixW/kLB/a7wp6dxRO2zDXloWMbxZM3yI
KAfeJvXInPRXTOlZpRVvxDxZYjvmzBkqfgYBsAG6QXNUnF9DzuynDDt37rRxlpWVNTY29vf3j46O
igf6mzdvLi2f7tP2xusuLf+Yrr29XTzlNRhLFm1mZmbys1sGL6JkzD9lkDo50gzprNd8baeYmDTA
JjHRljqlDUrhVaSDI23c4GRPCKNUzafsSxaZiAFLprmjN86/riAjOzv7h9CVUONsiB4+fCi+dzY7
VERNMScvHR8fF9+IebKCGUMVP4MA2ADdoDkqzm8IOaelpdEJ6OTkZG1trXigLykpoV3ho48+OnPm
DHMWFhZ2d3fTGSr7kR1zksH2HnGLkrZJZ9gXL16k/YP/jIDXDQFphnV1dSMjI7Q7kuAoLS3lkbyW
NMCcmGHDtnFKG5TCq0gHR9q4wdnQ0EDv9913333jjTfMAdJMeIB07g4ePMh/CvrJJ59UVFQw20x9
ff358+enp6dPnjwpvvfOzs7Z2dnm5ubjx48zZ+LyZSOkD6hUfCPmyQpmDENYzwA4GegGzVFxfkPI
ube3Nz8/n8756OgvHujpUP7SSy8dO3aMn/Hfvn27qKgoISGB7Q3MWV1dnZyczKowz5JFm9988832
7dvpxJROtQ11Q0Ca4cTExNGjR1NSUnbu3Hnnzh0eyWtJA8yJBbOLM0PaoBReRTo40sYNzvfee486
ou5o/zYHSDPhAdK5a29vF6+nIBFgqMWZmpoikZGVlUUxvHR8fPzQoUMej+fAgQNkMyf7XWd6evql
S5fEN2KerGDGMIT1DICTgW7QHBXnV8WcQTCY9/L1Q6f4OTk5j5bJzc1lv59wFFjPQDOgGzRHxflV
MWfNcMkwBq2dsDRi5tq1a8eOHausrOzt7TWWOQCsZ6AZEdQNVr8SAtEkcvMbOVTMGQArsJ6BZoSi
G+xPGnhpaPftZ7eaN3oF1nQXehDC/MYcFXMGwAqsZ6AZoeiGILGXF1L8z241bywQWNNd6EHk5jdy
qJgzAFZgPQPNCEU3cEHgkt3rnpWG9j9R8VbzNoh3oQf2hDC/MUfFnAGwAusZaMZ6dYP5XvdiKTOC
R7zVvA32d6EHIiHMb8xRMWcArMB6BpqxXt1gvte92Qge8VbzNtjfhR6IhDC/MUfFnAGwAusZaMZ6
dYONMwTdIN5q3gb7u9ADkRDmN+aomDMAVmA9A81wlm4QbzVvg/1d6IFICPMbc1TMGQArsJ6BZkRQ
N4Rw337xVvM22N+FHoiEML8xR8WcAbAC6xloRgR1Qwj37RdvNW9ukBviXeiBPSHMb8xRMWcArMB6
BpoRim6IHPxW88YCAcfehd6ZOGp+g0TFnAGwAusZaMZfdIMraIwNrIaxvjUsnt1qfmUbK3DsXeid
iYrHLBVzBsAKrGegGc76vgGEHRXnV8WcAbAC6xloBnSD5qg4vyrmDIAVWM9AM6AbNEfF+VUxZwCs
wHoGmgHdoDkqzu/vAdAL4xIHQGWgGzQH8wsAACCMQDdoDuYXAABAGIFu0BzMLwAAgDAC3aA5mF8A
AABhBLpBczC/AAAAwgh0g+ZgfgEAAIQR6AbNwfwCAAAII9ANmoP5BQAAEEagGzQH8wsAACCM/Fk3
AL0xzjkAAAAQKv8fe/zwVZZZCkoAAAAASUVORK5C" />
</BODY>
</HTML>

32
aufgabe4/main.py Normal file
View File

@ -0,0 +1,32 @@
from abc import ABC, abstractmethod
class Fahrgast:
def __init__(self, k_name, email):
self.k_name = k_name
self.email = email
class Mitfahrer:
def __init__(self, mitf_name, mitf_vorname, mitf_sitz_reservier):
self.mitf_name = mitf_name
self.mitf_vorname = mitf_vorname
self.mitf_sitz_reservier = mitf_sitz_reservier
class Fahrschein(ABC):
def __init__(self, fg: Fahrgast, start_dat, end_dat, kinderanz, von_ort, bis_ort, rueckfahrt, sitz_reserv):
self.fg = fg
self.start_dat = start_dat
self.end_dat = end_dat
self.kinderanz = kinderanz
self.von_ort = von_ort
self.bis_ort = bis_ort
self.rueckfahrt = rueckfahrt
self.sitz_reserv = sitz_reserv
@abstractmethod
def berechne_fahrpreis(self):
pass
class Einzelfahrschein(Fahrschein):
def berechne_fahrpreis(self):
return 100